MULTIPLE SOLUTIONS FOR RESONANT ELLIPTIC SYSTEMS VIA REDUCTION METHOD

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions for Strongly Resonant Nonlinear Elliptic Problems with Discontinuities

We examine a nonlinear strongly resonant elliptic problem driven by the p-Laplacian and with a discontinuous nonlinearity. We assume that the discontinuity points are countable and at them the nonlinearity has an upward jump discontinuity. We show that the problem has at least two nontrivial solutions without using a multivalued interpretation of the problem as it is often the case in the liter...

متن کامل

Multiple Solutions for Nonlinear Discontinuous Strongly Resonant Elliptic Problems

We consider quasilinear strongly resonant problems with discontinuous right-hand side. To develop an existence theory we pass to a multivalued problem by, roughly speaking, filling in the gaps at the discontinuity points. We prove the existence of at least three nontrivial solutions. Our approach uses the nonsmooth critical point theory for locally Lipschitz functionals due to Chang (1981) and ...

متن کامل

Multiple Solutions for Asymptotically Linear Resonant Elliptic Problems

In this paper we establish the existence of multiple solutions for the semilinear elliptic problem (1.1) −∆u = g(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, a function g: Ω×R→ R is of class C1 such that g(x, 0) = 0 and which is asymptotically linear at infinity. We considered both cases, resonant and nonresonant. We use critical groups to distinguish the c...

متن کامل

Multiple Positive Solutions for Some Nonlinear Elliptic Systems

where k1, k2 > 0 are positive constants, Ω ⊂ R is a bounded domain with a smooth boundary ∂Ω and V (u, v) ∈ C(R,R). We refer to [CdFM], [CM], [dFF], [dFM] and [HvV] for variational study of such elliptic systems. However, it seems that the multiplicity of positive solutions for such elliptic systems is not well studied. Here, we study a case related to some models (with diffusion) in mathematic...

متن کامل

A local min-max-orthogonal method for finding multiple solutions to noncooperative elliptic systems

A local min-max-orthogonal method together with its mathematical justification is developed in this paper to solve noncooperative elliptic systems for multiple solutions in an order. First it is discovered that a noncooperative system has the nature of a zero-sum game. A new local characterization for multiple unstable solutions is then established, under which a stable method for multiple solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2010

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972710000092